Подъем воды

Выполнили:

Торчилов Павел Робертович (11'A), Гулев Михаил Александрович (11'A)

Научный руководитель: Матюк Анатолий Эдуардович, учитель физики СШ №1 г. Лиды

Оглавление

Введение	2
Основная часть	3
Хлопчатобумажное полотно	3
Хлопчатобумажный сатин	4
Хлопчатобумажный джинс	5
Шерстяной трикотаж	6
Льняное полотно	7
Натуральный шелк крепдешин	7
Искусственный шелк вискоза.	
Искусственный штапель.	9
Синтетический креп-атлас	10
Синтетический трикотин	10
Кашемир	11
Шерсть с лавсаном	11
Заключение	12
Литература	14
Припомение	16

Введение

Если край сухой ткани опустить в воду, то вода начинает подниматься вверх по ткани. Это происходит за счет капиллярных явлений.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра — капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие — опускаются.

Вода смачивает ткань, поэтому она поднимается вверх по ткани, преодолевая силу тяжести.

Впитывание и перемещение влаги в текстильных материалах происходит по продольным порам, имеющимся в нитях и пряже.

Подъем воды между отдельными нитями не происходит, так как нити в силу переплетения не образуют между собой непрерывного капилляра.

Сила поверхностного натяжения F_{H} направлена вертикально вверх и с высотой поднятия воды не изменяется, так как она зависит от свойств жидкости, ткани и диаметра капилляра. Эти параметры для одной и той же ткани обычно не изменяются по длине.

Сила тяжести F_m , действующая на поднимающуюся в ткани воду, направлена вертикально вниз и с увеличением высоты h подъема воды увеличивается, так как зависит от массы поднятой воды.

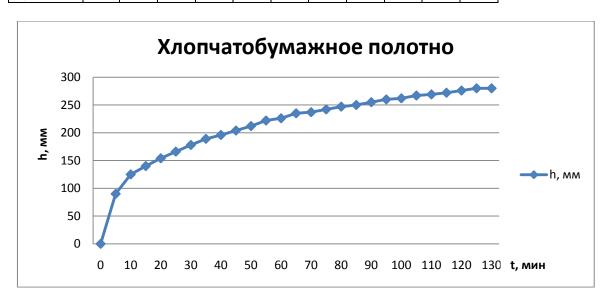
Поэтому скорость подъема воды v в ткани изменяется с высотой подъема. Она максимальная в начале подъема и с увеличением высоты уменьшается.

Когда сила тяжести уравновесит силу поверхностного натяжения $F_m = F_{H}$, подъем воды прекратится. При этом вода поднимется на максимальную высоту $h_{\text{макс}}$.

Основная часть

При проведении эксперимента были взяты различные виды тканей: натуральные (хлопчатобумажное полотно, хлопчатобумажный сатин, хлопчатобумажный джинс, шерсть трикотаж полотно, шерстяная ткань кашемир, лен полотно, шелк крепдешин), искусственные (искусственный шелк вискоза, искусственный штапель), синтетические (синтетический креп-атлас, синтетический трикотин), смешанные ткани (шерсть с лавсаном).

Ткань подвешивалась, и нижний конец ткани погружался в сосуд с водой. Затем через каждые 5 минут определялась высота подъема воды с помощью линейки.

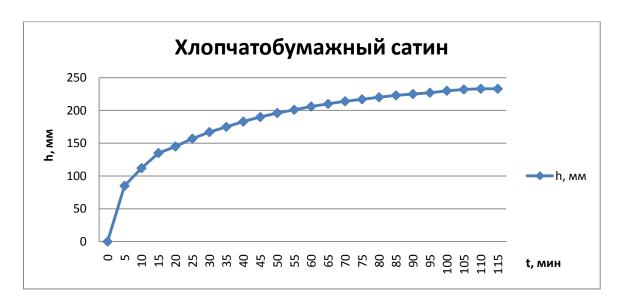

Средняя скорость подъема воды рассчитывалась как отношение максимальной высоты подъема воды ко времени этого подъема.

Далее приведены результаты проведенных исследований.

Таблица 1. Хлопчатобумажное полотно.

Время	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
подъема															
t, мин															
Высота	90	125	140	154	166	178	189	196	204	212	222	226	235	237	242
h, мм															

Время	80	85	90	95	100	105	110	115	120	125	130
подъема											
t, мин											
Высота	247	250	255	260	262	267	269	272	276	280	280
h, мм											


Максимальная высота подъема воды ткани ИЗ хлопчатобумажного полотна составляет $h_{\text{макс}} = 280 \text{ мм}$. Время подъема на данную высоту t = 125 мин. Следовательно, средняя скорость подъема на максимальную высоту равна: $\langle \vartheta \rangle = \frac{h_{\text{макс}}}{t} = \frac{280 \text{ мм}}{125 \text{ мин}} = 2,24 \frac{\text{мм}}{\text{мин}}.$

$$\langle \theta \rangle = \frac{h_{\text{MAKC}}}{t} = \frac{280 \text{ MM}}{125 \text{ MUH}} = 2,24 \frac{\text{MM}}{\text{MUH}}.$$

$$h_{\text{MaKC}} \cdot \langle \vartheta \rangle = 280 \text{MM} \cdot 2,24 \frac{\text{MM}}{\text{MUH}} = 627,2 \frac{\text{MM}^2}{\text{MUH}}.$$

Таблица 2. Хлопчатобумажный сатин.

Время	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
подъема															
t, мин															
Высота	85	112	135	145	157	167	175	183	190	196	201	206	210	214	217
h, мм															
Время	80	60	65	70	75	80	85	90	95	100	105	110	115		
подъема															
t, мин															
Высота	220	206	210	214	217	220	223	225	227	230	232	233	233		
h, mm															


Максимальная высота подъема воды в ткани из хлопчатобумажного сатина составляет $h_{\text{макс}}=233$ мм. Время подъема на данную высоту t=110 мин. Средняя скорость подъема на максимальную высоту равна:

$$\langle \vartheta \rangle = \frac{h_{\text{MaKC}}}{t} = \frac{233 \text{ MM}}{110 \text{ MuH}} = 2,12 \frac{\text{MM}}{\text{MuH}}.$$

$$h_{\text{Makc}} \cdot \langle \vartheta \rangle = 233 \text{MM} \cdot 2,12 \frac{\text{MM}}{\text{MuH}} = 494 \frac{\text{MM}^2}{\text{MuH}}.$$

Таблица 3. Хлопчатобумажный джинс.

Время	5	10	15	20	25	30	35	40
подъема								
t, мин								
Высота	23	27	31	35	37	38	39	39
h, мм								

Максимальная высота подъема воды в ткани из хлопчатобумажного джинса составляет $h_{\text{макс}} = 39$ мм. Время подъема на данную высоту t = 35 мин. Следовательно, средняя скорость подъема на максимальную высоту равна:

$$\langle \vartheta \rangle = \frac{h_{\text{MAKC}}}{t} = \frac{39 \text{ MM}}{35 \text{ MUH}} = 1.11 \frac{\text{MM}}{\text{MUH}}.$$

Произведение максимальной высоты подъема на среднюю скорость подъема равна:

$$h_{\text{Makc}} \cdot \langle \vartheta \rangle = 39 \text{MM} \cdot 1,11 \frac{\text{MM}}{\text{MuH}} = 43,3 \frac{\text{MM}^2}{\text{MuH}}.$$

Таблица 4. Шерстяной трикотаж.

Время	5	10	15	20	25	30	35	40	45	50	55	60	65
подъема													
t, мин													
Высота	17	26	33	38	42	44	47	50	53	55	58	60	60
h, мм													

Максимальная высота подъема воды в ткани из шерстяного трикотажного полотна составляет $h_{\text{макс}}=60$ мм. Время подъема на данную высоту t=60 мин. Средняя скорость подъема на максимальную высоту равна:

$$\langle \vartheta \rangle = \frac{h_{\text{MAKC}}}{t} = \frac{60 \text{ mm}}{60 \text{ muh}} = 1 \frac{\text{mm}}{\text{muh}}.$$

$$h_{\text{Makc}} \cdot \langle \vartheta \rangle = 60 \text{MM} \cdot 1 \frac{\text{MM}}{\text{MUH}} = 60 \frac{\text{MM}^2}{\text{MUH}}.$$

Таблица 5. Льняное полотно.

Время	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75
подъема															
t, мин															
Высота	48	59	66	72	77	81	89	93	95	98	100	102	103	105	107
h, мм															
Время	80	85	90	95											
подъема															
t, мин															
Высота	108	109	110	110											
h, мм															

Максимальная высота подъема воды в ткани из льняного полотна составляет $h_{\text{макс}}=110$ мм. Время подъема на данную высоту t=90 мин. Следовательно, средняя скорость подъема на максимальную высоту равна: $\langle \vartheta \rangle = \frac{h_{\text{макс}}}{t} = \frac{110 \text{ мм}}{90 \text{ мин}} = 1,22 \frac{\text{мм}}{\text{мин}}.$

$$h_{\text{Makc}} \cdot \langle \theta \rangle = 110 \text{MM} \cdot 1,22 \frac{\text{MM}}{\text{MuH}} = 134,2 \frac{\text{MM}^2}{\text{MuH}}.$$

Таблица 6. Натуральный шелк крепдешин.

Время	5	10	15
подъема			
t, мин			
Высота	5	10	10
h, мм			

Максимальная высота подъема воды в ткани из натурального шелка крепдешина составляет $h_{\text{макс}}=10$ мм. Время подъема на данную высоту t=10 мин. Средняя скорость подъема на максимальную высоту равна: $\langle \vartheta \rangle = \frac{h_{\text{макс}}}{t} = \frac{10 \text{ мм}}{10 \text{ мин}} = 1 \frac{\text{мм}}{\text{мин}}.$

$$h_{\text{Makc}} \cdot \langle \vartheta \rangle = 10 \text{MM} \cdot 1 \frac{\text{MM}}{\text{MUH}} = 10 \frac{\text{MM}^2}{\text{MUH}}.$$

Таблица 7. Искусственный шелк вискоза.

Время	5	10	15	20	25	30	35	40	45	50	55
подъема											
t, мин											
Высота	40	48	56	63	66	70	75	80	85	90	90
h, мм											

Максимальная высота подъема воды в ткани из искусственного шелка вискоза составляет $h_{\text{макс}} = 90$ мм. Время подъема на данную высоту t = 50 мин. Средняя скорость подъема на максимальную высоту равна: $\langle \vartheta \rangle = \frac{h_{\text{макс}}}{t} = \frac{90 \text{ мм}}{50 \text{ мин}} = 1,8 \frac{\text{мм}}{\text{мин}}.$

Произведение максимальной высоты подъема на среднюю скорость подъема равна:

$$h_{\text{макс}} \cdot \langle \vartheta \rangle = 90$$
мм · 1,8 $\frac{\text{мм}}{\text{мин}} = 162 \frac{\text{мм}^2}{\text{мин}}$.

Таблица 8. Искусственный штапель.

Время	5	10	15	20	25	30	35	40	45
подъема									
t, мин									
Высота	20	30	40	46	50	53	55	56	56
h, мм									

Максимальная высота подъема воды в ткани из искусственного штапеля составляет $h_{\text{макс}} = 56$ мм. Время подъема на данную высоту t = 40 мин. Следовательно, средняя скорость подъема на максимальную высоту равна:

$$\langle \vartheta \rangle = \frac{h_{\text{MAKC}}}{t} = \frac{56 \text{ MM}}{40 \text{ MUH}} = 1.4 \frac{\text{MM}}{\text{MUH}}.$$

$$h_{\text{Makc}} \cdot \langle \vartheta \rangle = 56 \text{MM} \cdot 1,4 \frac{\text{MM}}{\text{MuH}} = 78,4 \frac{\text{MM}^2}{\text{MuH}}.$$

Таблица 9. Синтетический креп-атлас.

Время	5	10	15	20	25	30	35	40	45	50	55
подъема											
t, мин											
Высота	50	70	80	85	90	95	98	100	102	105	105
h, мм											

Максимальная высота подъема воды в ткани из синтетического креп-атласа составляет $h_{\text{макс}} = 105$ мм. Время подъема на данную высоту t = 50 мин. Средняя скорость подъема на максимальную высоту равна:

$$\langle \vartheta \rangle = \frac{h_{MAKC}}{t} = \frac{105 \text{ MM}}{50 \text{ MUH}} = 2,1 \frac{MM}{MUH}.$$

$$h_{\scriptscriptstyle MAKC}\cdot\langle\vartheta
angle=105$$
мм · 2,1 $\frac{{\scriptscriptstyle MM}}{{\scriptscriptstyle MUH}}=220$,5 $\frac{{\scriptscriptstyle MM}^2}{{\scriptscriptstyle MUH}}$.

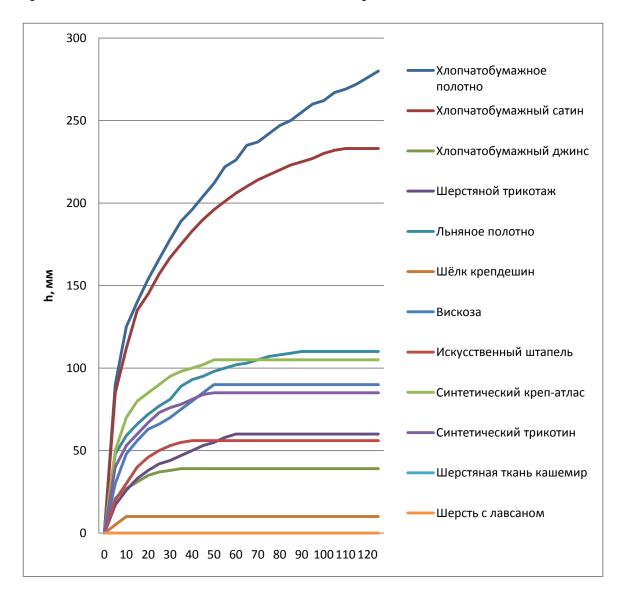
Таблица 10. Синтетический трикотин.

Время	5	10	15	20	25	30	35	40	45	50	55
подъема											
t, мин											
Высота	40	53	60	67	73	76	78	81	84	85	85
h, мм											

Максимальная высота подъема воды в ткани из синтетического трикотина составляет $h_{\text{макс}} = 85$ мм. Время подъема на данную высоту t = 50 мин. Следовательно, средняя скорость подъема на максимальную высоту равна:

$$\langle \vartheta \rangle = \frac{h_{\text{MAKC}}}{t} = \frac{85 \text{ MM}}{50 \text{ MUH}} = 1,7 \frac{\text{MM}}{\text{MUH}}.$$

Произведение максимальной высоты подъема на среднюю скорость подъема равна:

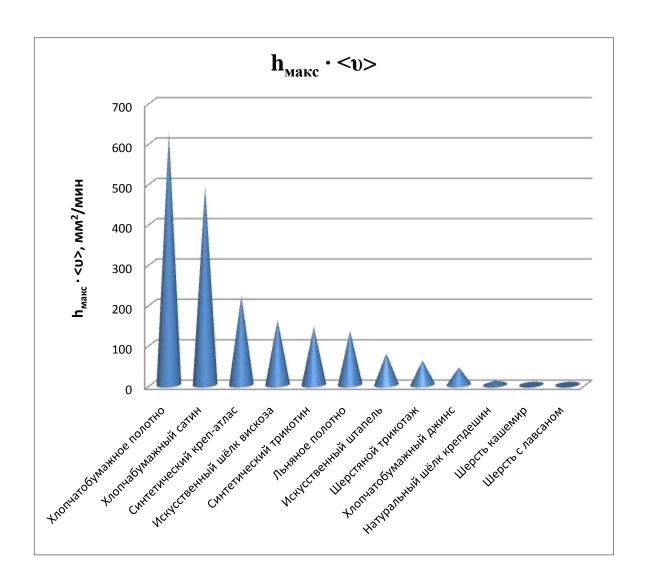

$$h_{\text{Makc}} \cdot \langle \vartheta \rangle = 85 \text{MM} \cdot 1,7 \frac{\text{MM}}{\text{MuH}} = 144,5 \frac{\text{MM}^2}{\text{MuH}}.$$

В шерстяной ткани кашемир вода не поднимается. Это означает, что $h_{\text{макс}}=0,\ \langle\vartheta\rangle=0,\ h_{\text{макс}}\cdot\langle\vartheta\rangle=0.$

В смешанной ткани шерсть с лавсаном вода также не поднимается. Это означает, что $h_{\text{макс}}=0,\ \langle\vartheta\rangle=0,\ h_{\text{макc}}\cdot\langle\vartheta\rangle=0.$

Заключение

Результаты исследований вначале представим в виде кривых скорости впитывания влаги тканями, которые мы исследовали.


Из графиков видно, что лучше всего воду впитывают хлопчатобумажное полотно и хлопчатобумажный сатин. А вот шерсть с лавсаном и шерстяная ткань кашемир воду вообще практически не впитывают. У этих тканей намокает только та часть, которая опущена в воду.

Ниже приведены таблицы, в которых указаны вид исследуемой ткани, максимальная высота подъема воды, средняя скорость подъема и произведение максимальной высоты подъема на среднюю скорость подъема, а также диаграмма произведения максимальной высоты подъема на среднюю скорость подъема для исследуемых тканей.

Вид ткани	Хлопчатобума	Хлопчатобумаж Хлопчатобумаж		Шерстяной
	жное полотно	ный сатин	ный джинс	трикотаж
Максимальная	280	233	39	60
высота подъема				
h_{make} , mm				
Средняя скорость	2,24	2,12	1,11	1
подъема $\langle \vartheta \rangle$, $\frac{MM}{MUH}$				
Произведение	627,2	494	43,3	60
$h_{{\scriptscriptstyle MAKC}} \cdot \langle \vartheta \rangle, \frac{{\scriptscriptstyle MM}^2}{{\scriptscriptstyle MUH}}$				

	Шерсть	Льняное	Натуральный	Искусственный
Вид ткани	кашемир	полотно	шелк крепдешин	шелк вискоза
Максимальная	0	110	10	90
высота подъема				
h_{make} , mm				
Средняя скорость	0	1,22	1	1,8
подъема $\langle \vartheta \rangle$, $\frac{MM}{MUH}$				
Произведение	0	134,2	10	162
$h_{{\scriptscriptstyle MAKC}} \cdot \langle \vartheta \rangle, \frac{{\scriptscriptstyle MM}^2}{{\scriptscriptstyle MUH}}$				

Вид ткани	Искусственный	Синтетический	Синтетический	Шерсть с
	штапель	креп-атлас	трикотин	лавсаном
Максимальная	56	105	85	0
высота подъема				
$h_{\text{макс}}$, мм				
Средняя скорость	1,4	2,1	1,7	0
подъема $\langle \vartheta \rangle$, $\frac{MM}{MUH}$				
Произведение	78,4	220,5	144,5	0
$h_{\text{MAKC}} \cdot \langle \vartheta \rangle, \frac{\text{MM}^2}{\text{MMH}}$				
мин				

Таким образом, в результате проведенного эксперимента было установлено, что из выбранных для исследования нами тканей выше всего вода поднялась в хлопчатобумажном полотне $h_{\text{макс}} = 280$ мм.

Наибольшая средняя скорость подъема воды также наблюдалось в хлопчатобумажном полотне и составила < $\upsilon>$ = 2,24 мм/мин.

Соответственно для этого полотна произведение величин $h_{\text{макс}} \cdot <\!\!\upsilon\!\!>$ максимально и равно 627, 2 мм 2 /мин.

Это объясняется тем, что в нитях хлопчатобумажного полотна имеются длинные продольные поры, по которым и поднимается вода.

В шерсти кашемире и шерсти с лавсаном вода вообще не поднимается. Значит у них длинных продольных пор нет. Нити у этих тканей короткие и сильно переплетены между собой. Кроме того, шерстяная нить может быть немного жирной, а, как известно, жирная поверхность водой не смачивается.

Литература

- 1. Виды тканей. Студия Ажур. http://www.studiaazhur.com.ua/articles/22-typesofcloth.html.
- 2. Капиллярность. Материал из Википедии свободной энциклопедии. http://ru.wikipedia.org/wiki/Капиллярность.
- 3. Круглова Е.А. Капиллярные явления. http://demo.home.nov.ru/toppage1.htm.
- 4. Намокаемость. Источник: «Технология тканевязного производства». Л.С. Смирнов, Ю.И. Масленников, В.Ю. Яворский. http://www.trikotazha.net/index.php?option=com_content&task=view&id=138&Itemid=43.
- 5. Типы тканей. Студия Ажур. http://www.studiaazhur.com.ua/articles/23-typesfabric.html.
- 6. Физические свойства тканей, трикотажа и нетканых материалов. http://www.otkani.ru/property/31.shtml.

Приложение

